Predictive Maintenance w branży chemicznej może obejmować szereg działań mających na celu zapewnienie niezawodności sprzętu, minimalizację awarii i maksymalizację dostępności maszyn.
Przejdźmy jednak do konkretów..
Przedstawimy Państwu realizacja projektu krok po kroku na przykładzie instalacji chemicznej z corocznym globalnym remontem, który w efekcie dostarcza nową instalację → Mamy instalację, która raz do roku przechodzi remont – wymianę katalizatora, czujników i ogólnie istotne zmiany – i w efekcie co roku dostajemy 'nową instalację’.
1. Gromadzenie i analiza danych, opracowanie wstępnego modelu
Po remoncie, po ustabilizowaniu pracy przez pewien czas zbieramy dane o zachowaniu instalacji. Po zgromadzeniu danych tworzymy wzorzec dobrego działania instalacji. Na tym etapie analizy uzyskujemy przedział zmienności odległości stanu instalacji od wzorca w przypadku nowej, prawidłowo działającej instalacji. Na bieżąco monitorujemy odległości stanu instalacji od wzorca. Przebieg zmian tej odległości prezentujemy na wykresie osobom odpowiedzialnym za proces.
Dzięki temu będą one w stanie nadzorować starzenie się instalacji, wykrywać anomalie i problemy. Co ważne, model uczenia maszynowego działa w tle, a użytkownicy korzystają ze zrozumiałego wykresu.
2. Model wskaźnika jakości procesu
Jednocześnie zbieramy dane na potrzeby drugiego modelu: ma on przewidywać zmianę wskaźnika jakości działania instalacji. Wskaźnik pogarsza się z powodu odkładania się depozytu w instalacji, zużywania się katalizatora – ogólnie starzenia się instalacji. Po pewnym czasie możemy już zbudować model przewidujący wartość wskaźnika jakości procesu. Znowu udostępniamy go inżynierom, jako wykres prezentujący dotychczasowy przebieg wskaźnika, jego przewidywane wartości i kiedy stanie się on nie-akceptowalny.
3. Model symulacji
Dodatkowo tworzymy narzędzie do symulacji, umożliwiające określenie, kiedy konieczny będzie remont przy różnych ustawieniach i scenariuszach wykorzystania instalacji. Może się np. okazać, że do zaplanowanego remontu jest jeszcze miesiąc, a katalizator przy standardowych obciążeniach wytrzymałby dwa miesiące –> Możemy go wtedy dociążyć, aby wykorzystać do końca i otrzymać większe uzyski.
Podsumowanie
Wdrożenie projektu PM w branży chemicznej nie tylko zwiększa niezawodność i dostępność maszyn, ale również umożliwia oszczędność zasobów poprzez skuteczne planowanie remontów. Prezentowane kroki stanowią jedynie przykład, a konkretne dostosowanie projektu zależy od indywidualnych potrzeb zakładu.
_________________________________________________________________________________________
Jeśli jesteś zainteresowany wdrożeniem podobnego projektu w swoim zakładzie chemicznym i chcesz dowiedzieć się, jakie korzyści możesz osiągnąć, skontaktuj się z nami na marketing@relia-sol.pl lub umów się na demo.
Wykorzystaj potencjał Predictive Maintenance dla efektywności i konkurencyjności Twojego przedsiębiorstwa! 👍